2013年11月26日星期二

Plastic Optical Fiber System


There are numbers of services providing large-volume information content, such as high-definition movies, continues to increase rapidly. Single-mode glass optical fiber has been widely deployed in data trunk lines and pipelines to connect large cities and nations. It has already become indispensable as an information transmission medium. However, SM GOF is mechanically weak and lacks sufficient bending ability. Moreover, as the core diameter is very small, just 10 um, extremely precise techniques and expensive devices are required to connect fibers to signals receiving devices.
Because of this, SM GOF is rearly used for very short reach networks, such as local area networks in buildings. Facing this “last hundred meters” problem in optical fiber infrastructure, plastic optical fiber has obvious advantage over it:
POF fiber is made out of a plastic such as acrylic (PMMA) as the core material and fluorinated or perfluorinated polymers as the cladding materials. It carries optical signals along a core made from plastic, instead of the more traditional silica, the price of which is much cheaper. It can cost approximately one fifth as much as comparable glass fiber. Which puts it within reach of more consumers. Customers who want to connect to the silica fiber optical network maintained by a telecommunications company usually cannot afford traditional optical fiber for internal wiring, but the plastic optical fiber can help to make the connection.
Plastic optical fiber (POF) systems offer the promise for low cost applications in communications, data transmission, illumination, lighting, imaging, sensing and light transmission. Plastic fiber optic systems provide the same advantages of glass optical fiber (GOF) but at lower cost and easier use. Glass optical fiber systems have received more attention than POF, mainly due to their rapid acceptance in telecommunications as data rates up to 100 Mbps and distance up to 100 meters.
Plastic fiber optic cable systems are also finding increased applications for sensors and lighting. The technology is also moving rapidly as evidenced by recent papers on multimode and single mode POF, high temperature fiber, integrated POF circuits, laminated lightguides, discrete components both active and passive, optical switching, and other developments too numerous to mention.
However, POF has two important weaknesses: it has significantly lower bandwidth than GOF, and its attenuation is far higher. Recent developments conquering both of these issues now mean that POF is regarded as the strongest candidate at present for optical data transmission over the last hundred meters.

没有评论:

发表评论